Insights from a Bibliometrics-Based Analysis of Publishing and Research Trends on Cerium Oxide from 1990 to 2020

Author:

Fleming Charlotte L.ORCID,Wong Jessie,Golzan MojtabaORCID,Gunawan CindyORCID,McGrath Kristine C.ORCID

Abstract

The purpose of this study is to evaluate the literature for research trends on cerium oxide from 1990 to 2020 and identify gaps in knowledge in the emerging application(s) of CeONP. Bibliometric methods were used to identify themes in database searches from PubMed, Scopus and Web of Science Core Collection using SWIFT-Review, VOSviewer and SciMAT software programs. A systematic review was completed on published cerium oxide literature extracted from the Scopus database (n = 17,115), identifying themes relevant to its industrial, environmental and biomedical applications. A total of 172 publications were included in the systematic analysis and categorized into four time periods with research themes identified; “doping additives” (n = 5, 1990–1997), “catalysts” (n = 32, 1998–2005), “reactive oxygen species” (n = 66, 2006–2013) and “pathology” (n = 69, 2014–2020). China and the USA showed the highest number of citations and publications for cerium oxide research from 1990 to 2020. Longitudinal analysis showed CeONP has been extensively used for various applications due to its catalytic properties. In conclusion, this study showed the trend in research in CeONP over the past three decades with advancements in nanoparticle engineering like doping, and more recently surface modification or functionalization to further enhanced its antioxidant abilities. As a result of recent nanoparticle engineering developments, research into CeONP biological effects have highlighted its therapeutic potential for a range of human pathologies such as Alzheimer’s disease. Whilst research over the past three decades show the versatility of cerium oxide in industrial and environmental applications, there are still research opportunities to investigate the potential beneficial effects of CeONP in its application(s) on human health.

Funder

Australian Government Research Training Program Scholarship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3