Aluminum Nanoparticles Affect Human Platelet Function In Vitro

Author:

Taterra Dominik123,Skinningsrud Bendik12,Lauritzen Sigurd12ORCID,Pękala Przemysław A.123,Szwedowski Dawid4ORCID,Tomaszewska Iwona M.5,Tomaszewski Krzysztof A.136

Affiliation:

1. International Evidence-Based Anatomy Working Group, 30-034 Krakow, Poland

2. Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland

3. Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland

4. Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland

5. Department of Medical Education, Jagiellonian University Medical College, 31-034 Krakow, Poland

6. Scanmed St. Raphael Hospital, 30-693 Krakow, Poland

Abstract

Endoprostheses are prone to tribological wear and biological processes that lead to the release of particles, including aluminum nanoparticles (Al NPs). Those particles can diffuse into circulation. However, the toxic effects of NPs on platelets have not been comprehensively analyzed. The aim of our work was to investigate the impact of Al NPs on human platelet function using a novel quartz crystal microbalance with dissipation (QCM-D) methodology. Moreover, a suite of assays, including light transmission aggregometry, flow cytometry, optical microscopy and transmission electron microscopy, were utilized. All Al NPs caused a significant increase in dissipation (D) and frequency (F), indicating platelet aggregation even at the lowest tested concentration (0.5 µg/mL), except for the largest (80 nm) Al NPs. A size-dependent effect on platelet aggregation was observed for the 5–20 nm NPs and the 30–50 nm NPs, with the larger Al NPs causing smaller increases in D and F; however, this was not observed for the 20–30 nm NPs. In conclusion, our study showed that small (5–50 nm) Al NPs caused platelet aggregation, and larger (80 nm) caused a bridging–penetrating effect in entering platelets, resulting in the formation of heterologous platelet–Al NPs structures. Therefore, physicians should consider monitoring NP serum levels and platelet activation indices in patients with orthopedic implants.

Funder

National Science Center Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3