Regulatory miPEP Open Reading Frames Contained in the Primary Transcripts of microRNAs

Author:

Erokhina Tatiana N.1,Ryazantsev Dmitriy Y.1ORCID,Zavriev Sergey K.1ORCID,Morozov Sergey Y.2ORCID

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia

2. Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

This review aims to consider retrospectively the available data on the coding properties of pri-microRNAs and the regulatory functions of their open reading frames (ORFs) and the encoded peptides (miPEPs). Studies identifying miPEPs and analyzing the fine molecular mechanisms of their functional activities are reviewed together with a brief description of the methods to identify pri-miRNA ORFs and the encoded protein products. Generally, miPEPs have been identified in many plant species of several families and in a few animal species. Importantly, molecular mechanisms of the miPEP action are often quite different between flowering plants and metazoan species. Requirement for the additional studies in these directions is highlighted by alternative findings concerning negative or positive regulation of pri-miRNA/miRNA expression by miPEPs in plants and animals. Additionally, the question of how miPEPs are distributed in non-flowering plant taxa is very important for understanding the evolutionary origin of such micropeptides. Evidently, further extensive studies are needed to explore the functions of miPEPs and the corresponding ORFs and to understand the full set of their roles in eukaryotic organisms. Thus, we address the most recent integrative views of different genomic, physiological, and molecular aspects concerning the expression of miPEPs and their possible fine functions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3