Design, Synthesis and Antifungal Activity of Novel 1,4-Pentadiene-3-one Containing Quinazolinone

Author:

Zhou Ran1,Zhan Wenliang1,Yuan Chunmei1,Zhang Tao1,Mao Piao1,Sun Zhiling1,An Yousan1,Xue Wei1ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China

Abstract

Twenty 1,4-pentadiene-3-one derivatives containing quinazolinone (W1–W20) were designed and synthesized. The bioactivity test results showed that some compounds had antifungal activities in vitro. W12 showed excellent bioactivity against Sclerotinia sclerotiorum (S. sclerotiorum) and Phomopsis sp., with EC50 values of 0.70 and 3.84 μg/mL, which are higher than those of the control drug azoxystrobin at 8.15 and 17.25 μg/mL. In vivo activity tests were carried out on oilseed rape and kiwifruit. The protective effect of W12 on oilseed rape infected with S. sclerotiorum (91.7 and 87.3%) was better than that of azoxystrobin (90.2 and 79.8%) at 100 and 50 μg/mL, respectively, and the protective effect on kiwifruit infected with Phomopsis sp. (96.2%) was better than that of azoxystrobin (94.6%) at 200 μg/mL. Scanning electron microscopy results showed the hyphae of S. sclerotiorum treated with compound W12 abnormally collapsed and shriveled, inhibiting the growth of mycelium and, thus, laying the inhibiting effect on S. sclerotiorum. The results of the mechanism research showed that the action of W12 changed the mycelial morphology of S. sclerotiorum, affected the permeability of cells, increased the leakage of cytoplasm and allowed the cell membrane to break down. This study shows that 1,4-pentadiene-3-one derivatives containing quinazolinone have good effects on plant fungi and the potential for becoming new fungicides.

Funder

National Nature Science Foundation of China

Science Foundation of Guizhou Province

Key Laboratory of Institute of Environment and Plant Protection

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3