Affiliation:
1. Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
2. Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia
Abstract
Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence–structure–property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).
Funder
The Ministry of Science and Higher Education of the Russian Federation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献