SAV-Pred: A Freely Available Web Application for the Prediction of Pathogenic Amino Acid Substitutions for Monogenic Hereditary Diseases Studied in Newborn Screening

Author:

Zadorozhny Anton D.1ORCID,Rudik Anastasia V.2ORCID,Filimonov Dmitry A.2,Lagunin Alexey A.12ORCID

Affiliation:

1. Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia

2. Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia

Abstract

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence–structure–property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).

Funder

The Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3