Abstract
The direct effects of particulate matter (PM) on lung injury and its specific molecular mechanisms are unclear. However, experimental evidence has shown that oxidative stress-mediated inflammation in macrophages is the main pathological outcome of PM exposure. Curcumin has been reported to protect organs against the disturbance of homeostasis caused by various toxic agents through anti-inflammatory and antioxidative effects. However, the protective action of curcumin against PM-induced pulmonary inflammation and the underlying mechanism have not been thoroughly investigated. In this study, we established a PM-induced pulmonary inflammation mouse model using the intratracheal instillation method to investigate the protective ability of curcumin against PM-induced pulmonary inflammation. Compared to the mice treated with PM only, the curcumin-treated mice showed alleviated alveolar damage, decreased immune cell infiltration, and reduced proinflammatory cytokine production in both lung tissue and BALF. To evaluate the underlying mechanism, the mouse macrophage cell line RAW264.7 was used. Pretreatment with curcumin prevented the production of PM-induced proinflammatory cytokines by deactivating NF-κB through the suppression of MAPK signaling pathways. Furthermore, curcumin appears to attenuate PM-induced oxidative stress through the activation of Nrf2 and downstream antioxidant signaling. Our findings demonstrate that curcumin protects against PM-induced lung injury by suppressing oxidative stress and inflammatory activation in macrophages.
Funder
National Research Foundation of Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献