Light Drives and Temperature Modulates: Variation of Phenolic Compounds Profile in Relation to Photosynthesis in Spring Barley

Author:

Vrábl Daniel1,Nezval Jakub1ORCID,Pech Radomír1,Volná Adriana1,Mašková Petra2ORCID,Pleva Jan1,Kuzniciusová Nikola1,Provazová Michaela1,Štroch Michal13ORCID,Špunda Vladimír13ORCID

Affiliation:

1. Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic

2. Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic

3. Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic

Abstract

Accumulation and metabolic profile of phenolic compounds (PheCs; serving as UV-screening pigments and antioxidants) as well as carbon fixation rate (An) and plant growth are sensitive to irradiance and temperature. Since these factors are naturally co-acting in the environment, it is worthy to study the combined effects of these environmental factors to assess their possible physiological consequences. We investigated how low and high irradiance in combination with different temperatures modify the metabolic profile of PheCs and expression of genes involved in the antioxidative enzyme and PheCs biosynthesis, in relation to photosynthetic activity and availability of non-structural carbohydrates (NSC) in spring barley seedlings. High irradiance positively affected An, NSC, PheCs content, and antioxidant activity (AOX). High temperature led to decreased An, NSC, and increased dark respiration, whilst low temperature was accompanied by reduction of UV-A shielding but increase of PheCs content and AOX. Besides that, irradiance and temperature caused changes in the metabolic profile of PheCs, particularly alteration in homoorientin/isovitexin derivatives ratio, possibly related to demands on AOX-based protection. Moreover, we also observed changes in the ratio of sinapoyl-/feruloyl- acylated flavonoids, the function of which is not yet known. The data also strongly suggested that the NSC content may support the PheCs production.

Funder

Czech Science Foundation

University of Ostrava

Moravian-Silesian Region

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3