Interactions between Dental MSCs and Biomimetic Composite Scaffold during Bone Remodeling Followed by In Vivo Real-Time Bioimaging

Author:

Costa Ana Catarina,Alves Patrícia Mafalda,Monteiro Fernando JorgeORCID,Salgado ChristianeORCID

Abstract

Oral–maxillofacial tumor removal can generate critical bone defects and major problems for patients, causing dysfunctionalities and affecting oral competencies such as mastication, swallowing, and breathing. The association of novel biomaterials and cell therapies in tissue engineering strategies could offer new strategies to promote osteomucosa healing. This study focused on the development of a bioengineered construct loaded with human dental follicle cells (MSCs). To increase the bioconstruct integration to the surrounding tissue, a novel and comprehensive approach was designed combining an injectable biomimetic hydrogel and dental stem cells (hDFMSCs) expressing luminescence/fluorescence for semi-quantitative tissue imaging in live animals. This in vivo model with human MSCs was based on an intramembranous bone regeneration process (IMO). Biologically, the biocomposite based on collagen/nanohydroxyapatite filled with cell-loaded osteopontin–fibrin hydrogel (Coll/nanoHA OPN-Fb) exhibited a high cellular proliferation rate, increased bone extracellular matrix deposition (osteopontin) and high ALP activity, indicating an early osteogenic differentiation. Thus, the presence of human OPN enhanced hDFMSC adhesion, migration, and spatial distribution within the 3D matrix. The developed 3D bioconstruct provided the necessary pro-regenerative effect to modulate the biological response, precisely fitting the bone defect with fine-tuned adjustment to the surrounding original structure and promoting oral osteomucosa tissue regeneration. We were also able to track the cells in vivo and evaluate their behavior (migration, proliferation, and differentiation), providing a glimpse into bone regeneration and helping in the optimization of patient-specific therapies.

Funder

Portuguese funds through FCT/MCTES

FCT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3