Affiliation:
1. Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from failure of neural tube closure during embryogenesis, which is affected by the interaction of genetic and environmental factors. It is well known that folate deficiency increases the incidence of NTDs; however, the underlying mechanism remains unclear. Folate deficiency not only causes DNA hypomethylation, but also blocks the synthesis of 2′-deoxythymidine-5′–monophosphate (dTMP) and increases uracil misincorporation, resulting in genomic instabilities such as base mismatch, DNA breakage, and even chromosome aberration. DNA repair pathways are essential for ensuring normal DNA synthesis, genomic stability and integrity during embryonic neural development. Genomic instability or lack of DNA repair has been implicated in risk of development of NTDs. Here, we reviewed the relationship between folate deficiency, DNA repair pathways and NTDs so as to reveal the role and significance of DNA repair system in the pathogenesis of NTDs and better understand the pathogenesis of NTDs.
Funder
the Beijing Natural Science Foundation
Research Foundation of Capital Institute of Pediatrics
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献