SARS-CoV-2 as an Oncolytic Virus Following Reactivation of the Immune System: A Review

Author:

Bounassar-Filho Joao P.1,Boeckler-Troncoso Laura1,Cajigas-Gonzalez Jocelyne1,Zavala-Cerna Maria G.2ORCID

Affiliation:

1. School of Medicine, Health Sciences Decan, Universidad Autonoma de Guadalajara, Zapopan 45129, Mexico

2. Immunology Research Laboratory, Health Sciences Decan, Universidad Autonoma de Guadalajara, Zapopan 45129, Mexico

Abstract

The effects SARS-CoV-2 inflicts on human physiology, especially in patients who developed COVID-19, can range from flu-like symptoms to death, and although many lives have been lost during the pandemic, others have faced the resolution of aggressive neoplasms that once proclaimed a poor prognosis following traditional treatments. The purpose of this review was to analyze several fortunate case reports and their associated biomolecular pathways to further explore new avenues that might provide oncological treatments in the future of medicine. We included papers that discussed cases in which patients affected by COVID-19 suffered beneficial changes in their cancer status. Multiple mechanisms which elicited a reactivation of the host’s immune system included cross-reactivity with viral antigens and downregulation of neoplastic cells. We were able to identify important cases presenting the resolution/remission of different aggressive neoplasms, for which most of the time, standard-of-care treatments offered little to no prospect towards a cure. The intricacy of the defense mechanisms humans have adopted against cancer cells through the millennia are still not well understood, but SARS-CoV-2 has demonstrated that the same ruinous cytokine storm which has taken so many lives can paradoxically be the answer we have been looking for to recalibrate the immunological system to retarget and vanquish malignancies.

Funder

“Fondo Semilla” of UAG’s Research Directorate

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3