Annotation-Free Deep Learning-Based Prediction of Thyroid Molecular Cancer Biomarker BRAF (V600E) from Cytological Slides

Author:

Wang Ching-Wei12ORCID,Muzakky Hikam1,Lee Yu-Ching2ORCID,Lin Yi-Jia34ORCID,Chao Tai-Kuang34ORCID

Affiliation:

1. Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

2. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

3. Department of Pathology, Tri-Service General Hospital, Taipei 106335, Taiwan

4. Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 106335, Taiwan

Abstract

Thyroid cancer is the most common endocrine cancer. Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all thyroid cancers arising from follicular cells. Fine needle aspiration cytology (FNAC) is a non-invasive method regarded as the most cost-effective and accurate diagnostic method of choice in diagnosing PTC. Identification of BRAF (V600E) mutation in thyroid neoplasia may be beneficial because it is specific for malignancy, implies a worse prognosis, and is the target for selective BRAF inhibitors. To the authors’ best knowledge, this is the first automated precision oncology framework effectively predict BRAF (V600E) immunostaining result in thyroidectomy specimen directly from Papanicolaou-stained thyroid fine-needle aspiration cytology and ThinPrep cytological slides, which is helpful for novel targeted therapies and prognosis prediction. The proposed deep learning (DL) framework is evaluated on a dataset of 118 whole slide images. The results show that the proposed DL-based technique achieves an accuracy of 87%, a precision of 94%, a sensitivity of 91%, a specificity of 71% and a mean of sensitivity and specificity at 81% and outperformed three state-of-the-art deep learning approaches. This study demonstrates the feasibility of DL-based prediction of critical molecular features in cytological slides, which not only aid in accurate diagnosis but also provide useful information in guiding clinical decision-making in patients with thyroid cancer. With the accumulation of data and the continuous advancement of technology, the performance of DL systems is expected to be improved in the near future. Therefore, we expect that DL can provide a cost-effective and time-effective alternative tool for patients in the era of precision oncology.

Funder

Ministry of Science and Technology of Taiwan

Tri-Service General Hospital, Taipei, Taiwan

National Taiwan University of Science and Technology—Tri-Service General Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3