Affiliation:
1. Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
2. Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
Abstract
Human papillomavirus (HPV)-associated lesions and malignancies exhibit alterations in the composition and functionality of the extracellular matrix (ECM) that represent the complex molecular pathways present between infection and disease. A total of 20 urine samples were used, including from 10 patients with cervical intraepithelial neoplasia grade 3 (CIN3) and 10 healthy controls to perform the label-free quantitative analysis using the nano-HPLC and ESI-MS ion trap mass analyzer and matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF/MS) fast screening. Among 476 identified/quantified proteins, 48 were significantly changed (log2-fold change ≥1.0 or ≤−1.0, −log10 (bbinominal, p-value ≥ 1.3), of which were 40 proteins (down-regulated) and 8 proteins (up-regulated) in CIN3, in comparison to healthy controls. The biological function and key pathway enrichment of the gene set using gen set enrichment analysis (GSEA) were analyzed. The ECM-receptor interaction pathway (NES = −1.64, p = 0.026) was down-regulated by 13 proteins (HSPG2, COL6A1, COL6A3, SPP1, THBS1, TNC, DAG1, FN1, COMP, GP6, VTN, SDC1, and CD44; log2 FC range from −0.03 to −1.48) for the CIN3 group in the KEGG database. The MALDI-TOF/MS screening showed the difference of protein profiles between the control and CIN3 groups, i.e., using the scatter plot with a well-separated shape, as well as effectively distinguishing both groups (control and CIN3) using genetic algorithms (GA) with cross-validation (51.56%) and recognition capability (95.0%). Decreased levels of ECM-receptor interaction proteins may cause disturbances in the interactions of cells with the ECM and play an important role in the development and progression of cervical cancer.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献