Affiliation:
1. College of Agriculture, Hunan Agricultural University, Changsha 410128, China
2. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
3. Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
4. Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
Abstract
Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security. The grain filling stage is the final stage of growth and is also the most important stage in cereals, directly determining the grain weight and final yield. However, the grain filling process is extremely vulnerable to different environmental stimuli, especially for inferior spikelets. Given the importance of grain filling in cereals and the deterioration of environmental problems, understanding environmental stimuli and their effects on grain filling constitutes a major focus of crop research. In recent years, significant advances made in this field have led to a good description of the intricate mechanisms by which different environmental stimuli regulate grain filling, as well as approaches to adapt cereals to changing climate conditions and to give them better grain filling. In this review, the current environmental stimuli, their dose–response effect on grain filling, and the physiological and molecular mechanisms involved are discussed. Furthermore, what we can do to help cereal crops adapt to environmental stimuli is elaborated. Overall, we call for future research to delve deeper into the gene function-related research and the commercialization of gene-edited crops. Meanwhile, smart agriculture is the development trend of the future agriculture under environmental stimuli.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Guangdong Basic and Applied Basic Research Foundation
Shenzhen Science and Technology Program
Scientific Research Project of Education Department of Hunan Province
Hong Kong Research Grant Council
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献