Affiliation:
1. Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
2. Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
Abstract
Neuron-glia interactions are essential for the central nervous system’s homeostasis. Microglial cells are one of the key support cells in the brain that respond to disruptions in such homeostasis. Although their participation in neuroinflammation is well known, studies investigating their role in ferroptosis, an iron-dependent form of nonapoptotic cell death, are lacking. To address this issue, we explored whether microglial (BV-2 cells) activation products can intensify, mitigate or block oxidative and/or ferroptotic damage in neuronal cells (HT22 cell line). Cultured BV-2 microglial cells were stimulated with 5–100 ng/mL lipopolysaccharide (LPS) for 24 h and, after confirmation of microglial activation, their culture medium (conditioned media; CM) was transferred to neuronal cells, which was subsequently (6 h later) exposed to glutamate or tert-butyl hydroperoxide (t-BuOOH). As a major finding, HT22 cells pretreated for 6 h with CM exhibited a significant ferroptosis-resistant phenotype characterized by decreased sensitivity to glutamate (15 mM)-induced cytotoxicity. However, no significant protective effects of LPS-activated microglial cell-derived CM were observed in t-BuOOH (30 µM)-challenged cells. In summary, activated microglia-derived molecules may protect neuronal cells against ferroptosis. The phenomenon observed in this work highlights the beneficial relationship between microglia and neurons, highlighting new possibilities for the control of ferroptosis.
Funder
NATIONAL COUNCIL FOR SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献