PTCHD1 Binds Cholesterol but Not Sonic Hedgehog, Suggesting a Distinct Cellular Function

Author:

Hiltunen Mimmu K.1ORCID,Timmis Alex J.2,Thomsen Maren3,Gkotsi Danai S.23,Iwaï Hideo4ORCID,Ribeiro Orquidea M.1ORCID,Goldman Adrian13,Riobo-Del Galdo Natalia A.235ORCID

Affiliation:

1. Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland

2. School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK

3. Astbury Center for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

4. Institute of Biotechnology, HiLiFE, University of Helsinki, 00100 Helsinki, Finland

5. Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK

Abstract

Deleterious mutations in the X-linked Patched domain-containing 1 (PTCHD1) gene may account for up to 1% of autism cases. Despite this, the PTCHD1 protein remains poorly understood. Structural similarities to Patched family proteins point to a role in sterol transport, but this hypothesis has not been verified experimentally. Additionally, PTCHD1 has been suggested to be involved in Hedgehog signalling, but thus far, the experimental results have been conflicting. To enable a variety of biochemical and structural experiments, we developed a method for expressing PTCHD1 in Spodoptera frugiperda cells, solubilising it in glycol-diosgenin, and purifying it to homogeneity. In vitro and in silico experiments show that PTCHD1 function is not interchangeable with Patched 1 (PTCH1) in canonical Hedgehog signalling, since it does not repress Smoothened in Ptch1−/− mouse embryonic fibroblasts and does not bind Sonic Hedgehog. However, we found that PTCHD1 binds cholesterol similarly to PTCH1. Furthermore, we identified 13 PTCHD1-specific protein interactors through co-immunoprecipitation and demonstrated a link to cell stress responses and RNA stress granule formation. Thus, our results support the notion that despite structural similarities to other Patched family proteins, PTCHD1 may have a distinct cellular function.

Funder

Academy of Finland

Biotechnology and Biological Sciences Research Council

University of Leeds Scholarship

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3