Heat Shock Transcription Factor GhHSFB2a Is Crucial for Cotton Resistance to Verticillium dahliae

Author:

Liu Lu,Wang Qi,Zhu Linfeng,Guo Huiming,Cheng HongmeiORCID,Su XiaofengORCID

Abstract

Heat shock transcription factors (HSFs) play a critical regulatory role in many plant disease resistance pathways. However, the molecular mechanisms of cotton HSFs involved in resistance to the soil-borne fungus Verticillium dahliae are limited. In our previous study, we identified numerous differentially expressed genes (DEGs) in the transcriptome and metabolome of V. dahliae-inoculated Arabidopsis thaliana. In this study, we identified and functionally characterized GhHSFB2a, which is a DEG belonging to HSFs and related to cotton immunity to V. dahliae. Subsequently, the phylogenetic tree of the type two of the HSFB subfamily in different species was divided into two subgroups: A. thaliana and strawberry, which have the closest evolutionary relationship to cotton. We performed promoter cis-element analysis and showed that the defense-reaction-associated cis-acting element-FC-rich motif may be involved in the plant response to V. dahliae in cotton. The expression pattern analysis of GhHSFB2a displayed that it is transcriptional in roots, stems, and leaves and significantly higher at 12 h post-inoculation (hpi). Subcellular localization of GhHSFB2a was observed, and the results showed localization to the nucleus. Virus-induced gene silencing (VIGS) analysis exhibited that GhHSFB2a silencing increased the disease index and fungal biomass and attenuated resistance against V. dahliae. Transcriptome sequencing of wild-type and GhHSFB2a-silenced plants, followed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein–protein interaction, and validation of marker genes revealed that ABA, ethylene, linoleic acid, and phenylpropanoid pathways are involved in GhHSFB2a-mediated plant disease resistance. Ectopic overexpression of the GhHSFB2a gene in Arabidopsis showed a significant increase in the disease resistance. Cumulatively, our results suggest that GhHSFB2a is required for the cotton immune response against V. dahliae-mediated ABA, ethylene, linoleic acid, and phenylpropanoid pathways, indicating its potential role in the molecular design breeding of plants.

Funder

Hainan Yazhou Bay Seed Laboratory

National Key Research and Development Program of China

National Natural Science Foundation of China

Central Public-Interest Scientific Institution Basal Research Fund

Hebei Technology Innovation Center for Green Management of Soil-borne Diseases

Agricultural Science and Technology Innovation Program of CAAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transcription Control Mechanisms for Plant Stress Responses;International Journal of Molecular Sciences;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3