TAT Nanobody Exerts Antiviral Effect against PRRSV In Vitro by Targeting Viral Nucleocapsid Protein

Author:

Ren Jiahui,Duan Hong,Dong Haoxin,Wu Shuya,Du Yongkun,Zhang Gaiping,Zhang Angke

Abstract

Porcine reproductive and respiratory syndrome (PRRS) is caused by the PRRS virus (PRRSV), which has brought huge economic losses to the pork industry worldwide since its first discovery in the late 1980s in North America. To date, there are no effective commercial vaccines or therapeutic drugs available for controlling the spread of PRRSV. Due to their unique advantages of high affinity and high specificity, nanobodies (Nbs) have received increasing attention in the process of disease diagnosis and treatment. Trans-activator transcription (TAT) can serve as a vector to carry specific proteins into cells by passing through cell membranes. In our previous study, a specific Nb against the PRRSV nucleocapsid (N) protein was screened using phage display technology. For this study, we developed a novel recombinant protein constituting a TAT-conjugated Nb, which we call TAT-Nb1. The target cell entry efficiency of TAT-Nb1 and its effect on PRRSV infection and replication were then investigated. Our results indicate that TAT delivered Nb1 into Marc-145 cells and porcine alveolar macrophages (PAMs) in a dose- and time-dependent manner. Furthermore, TAT-Nb1 dose-dependently suppressed PRRSV infection and replication, where this antiviral effect was independent of PRRSV strain. Co-immunoprecipitation results revealed that Nb1 efficiently interacted with the N protein of PRRSV. Taken together, the presented results suggest that TAT-Nb1 can effectively suppress PRRSV replication, and it may be considered as a new anti-PRRSV candidate drug.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation Special Funding

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanobodies against porcine CD163 as PRRSV broad inhibitor;International Journal of Biological Macromolecules;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3