Affiliation:
1. School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
2. Plant Breeding Institute, University of Sydney, Cobbitty, NSW 2570, Australia
Abstract
Serpins constitute a family of proteins with a very wide distribution in nature. Serpins have a well-conserved tertiary structure enabling irreversible protease inhibition or other specific biochemical functions. We examined the 189 putative wheat serpin genes previously identified by Benbow et al. (2019) via analysis of gene annotations (RefSeq v1.0) and combined our previous examinations of wheat ESTs and the 454 genome assembly. We found that 81 of the 189 putative serpin genes, plus two manually annotated genes, encode full-length, structurally conserved serpins. Expression of these serpin genes during wheat development and disease/abiotic stress responses was analysed using a publicly available RNAseq database. Results showed that the wheat LR serpins, homologous to Arabidopsis AtSerpin1 and barley BSZx, are ubiquitously expressed across all tissues throughout the wheat lifecycle, whereas the expression of other wheat serpin genes is tissue-specific, including expression only in the grain, only in the root, and only in the anther and microspore. Nine serpin genes were upregulated in both biotic and abiotic responses. Two genes in particular were highly expressed during disease and abiotic challenges. Our findings provide valuable information for further functional study of the wheat serpins, which in turn may lead to their application as molecular markers in wheat breeding.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献