Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity

Author:

Umugire Alphonse123ORCID,Nam Yoon Seok1ORCID,Nam Ye Eun4ORCID,Choi Young Mi1,Choi Se Myeong4ORCID,Lee Sungsu1,Cho Jong Hyun45ORCID,Cho Hyong-Ho12ORCID

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea

2. Department of Biomedical Science, College of Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea

3. BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, Republic of Korea

4. Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea

5. Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea

Abstract

Cisplatin-induced ototoxicity leads to hearing impairment, possibly through reactive oxygen species (ROS) production and DNA damage in cochlear hair cells (HC), although the exact mechanism is unknown. Avenanthramide-C (AVN-C), a natural, potent antioxidant, was evaluated in three study groups of normal adult C57Bl/6 mice (control, cisplatin, and AVN-C+cisplatin) for the prevention of cisplatin-induced hearing loss. Auditory brainstem responses and immunohistochemistry of outer hair cells (OHCs) were ascertained. Cell survival, ROS production, Phospho-H2AX-enabled tracking of DNA damage-repair kinetics, and expression levels of inflammatory cytokines (TNF-α, IL-1β, IL6, iNOS, and COX2) were assessed using House Ear Institute-Organ of Corti 1 (HEI-OC1 Cells). In the in vivo mouse model, following cisplatin-induced damage, AVN-C decreased the hearing thresholds and sheltered all cochlear turns’ OHCs. In HEI-OC1 cells, AVN-C preserved cell viability and decreased ROS production, whereas cisplatin enhanced both ROS levels and cell viability. In HEI-OC1 cells, AVN-C downregulated IL6, IL-1β, TNF-α, iNOS, and COX2 production that was upregulated by cisplatin treatment. AVN-C attenuated the cisplatin-enhanced nuclear H2AX activation. AVN-C had a strong protective effect against cisplatin-induced ototoxicity through inhibition of ROS and inflammatory cytokine production and DNA damage and is thus a promising candidate for preventing cisplatin-induced sensorineural hearing loss.

Funder

Korean government

Chonnam National University Hospital Biomedical Research Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Nutraceuticals on Cisplatin-Induced Cytotoxicity in HEI-OC1 Cells;International Journal of Molecular Sciences;2023-12-12

2. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions;International Journal of Molecular Sciences;2023-11-20

3. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy;Expert Opinion on Drug Metabolism & Toxicology;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3