Reovirus Type 3 Dearing Variants Do Not Induce Necroptosis in RIPK3-Expressing Human Tumor Cell Lines

Author:

van den Wollenberg Diana J. M.1ORCID,Kemp Vera1ORCID,Rabelink Martijn J. W. E.1ORCID,Hoeben Rob C.1ORCID

Affiliation:

1. Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands

Abstract

Reoviruses are used as oncolytic viruses to destroy tumor cells. The concomitant induction of anti-tumor immune responses enhances the efficacy of therapy in tumors with low amounts of immune infiltrates before treatment. The reoviruses should provoke immunogenic cell death (ICD) to stimulate a tumor cell-directed immune response. Necroptosis is considered a major form of ICD, and involves receptor-interacting protein kinase 1 (RIPK1), RIPK3 and phosphorylation of mixed-lineage kinase domain-like protein (MLKL). This leads to cell membrane disintegration and the release of damage-associated molecular patterns that can activate immune responses. Reovirus Type 3 Dearing (T3D) can induce necroptosis in mouse L929 fibroblast cells and mouse embryonic fibroblasts. Most human tumor cell lines have a defect in RIPK3 expression and consequently fail to induce necroptosis as measured by MLKL phosphorylation. We used the human colorectal adenocarcinoma HT29 cell line as a model to study necroptosis in human cells since this cell line has frequently been described in necroptosis-related studies. To stimulate MLKL phosphorylation and induce necroptosis, HT29 cells were treated with a cocktail consisting of TNFα, the SMAC mimetic BV6, and the caspase inhibitor Z-VAD-FMK. While this treatment induced necroptosis, three different reovirus T3D variants, i.e., the plasmid-based reverse genetics generated virus (T3DK), the wild-type reovirus T3D isolate R124, and the junction adhesion molecule-A-independent reovirus mutant (jin-1) failed to induce necroptosis in HT29 cells. In contrast, these viruses induced MLKL phosphorylation in murine L929 cells, albeit with varying efficiencies. Our study shows that while reoviruses efficiently induce necroptosis in L929 cells, this is not a common phenotype in human cell lines. This study emphasizes the difficulties of translating the results of ICD studies from murine cells to human cells.

Funder

Dutch Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3