Investigation of Glucose–Water Mixtures as a Function of Concentration and Temperature by Infrared Spectroscopy

Author:

Caccamo Maria Teresa12ORCID,Magazù Salvatore12ORCID

Affiliation:

1. Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F.S. D’Alcontres, 31, 98166 Messina, Italy

2. Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale F.S. D’Alcontres, 31, 98166 Messina, Italy

Abstract

The main aim of the present paper is to characterize the hydration properties of glucose and the hydrogen bond network in glucose–water mixtures. For these purposes, temperature scans on ten concentration values of glucose–water mixtures were performed by means of Fourier Transform InfraRed (FTIR) spectroscopy. More specifically, in order to get this information an analysis of the intramolecular OH stretching mode, investigating the 3000–3700 cm−1 spectral range, was performed by means of an innovative approach based on the evaluation of the Spectral Distance (SD). The adopted procedure allows evaluating the glucose hydration number as well as characterizing the temperature behavior of the hydrogen bond network in the glucose–water mixtures. The obtained results for the hydration number are in excellent agreement with literature data and suggest the existence of a particular concentration value for which the hydrogen bond network shows a maximum strength.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference35 articles.

1. Kohlmeier, M. (2003). Food Science and Technology, Nutrient Metabolism, Academic Press.

2. Separation of glucose, other reducing sugars and phenolics from natural extract by nanofiltration: Effect of pressure and cross-flow velocity;Tonova;Chem. Eng. Res. Design,2020

3. The chemical composition of the adult human body and its bearing on the biochemistry of growth;Mitchell;J. Biol. Chem.,1945

4. Stability study of furans, glucose and xylose under overliming conditions: Effect of sugar degradation products;Andary;Biores. Technol. Rep.,2021

5. The energy spectrum of vibration of molecules in water and its properties;Feng;J. Mol. Liq.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3