Novel Benzo[a]phenoxazinium Chlorides Functionalized with Sulfonamide Groups as NIR Fluorescent Probes for Vacuole, Endoplasmic Reticulum, and Plasma Membrane Staining

Author:

Ferreira João C. C.123,Sousa Rui P. C. L.12ORCID,Preto A.23ORCID,Sousa Maria João23ORCID,Gonçalves M. Sameiro T.1ORCID

Affiliation:

1. Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

2. Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

3. Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

Abstract

The demand for new fluorophores for different biological target imaging is increasing. Benzo[a]phenoxazine derivatives are fluorochromophores that show promising optical properties for bioimaging, namely fluorescent emission at the NIR of the visible region, where biological samples have minimal fluorescence emission. In this study, six new benzo[a]phenoxazinium chlorides possessing sulfonamide groups at 5-amino-positions were synthesized and their optical and biological properties were tested. Compared with previous probes evaluated using fluorescence microscopy, using different S. cerevisiae strains, these probes, with sulfonamide groups, stained the vacuole membrane and/or the perinuclear membrane of the endoplasmic reticulum with great specificity, with some fluorochromophores capable of even staining the plasma membrane. Thus, the addition of a sulfonamide group to the benzo[a]phenoxazinium core increases their specificity and attributes for the fluorescent labeling of cell applications and fractions, highlighting them as quite valid alternatives to commercially available dyes.

Funder

FCT (Fundação para a Ciência e Tecnologia, Portugal) and FEDER (European Fund for Regional Development)-COMPETEQREN-EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3