Prevention of Chemotherapy-Induced Peripheral Neuropathy by Inhibiting C-X-C Motif Chemokine Receptor 2

Author:

Cho Hee Seong1,Choi Young In1ORCID,Park Seon Uk1,Han Yi Seul1,Kwon Jean2,Jung Sung Jun13ORCID

Affiliation:

1. Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea

2. Department of Biological Sciences, Columbia University, New York, NY 10027, USA

3. Department of Physiology, College of Medicine, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a major drawback in the use of chemotherapeutic agents for patients with cancer. Although studies have investigated a broad number of molecules that might be related to CIPN, the differences in the chemokine pathways between various chemotherapeutic agents, such as vincristine and oxaliplatin, which are some of the most widely used treatments, have not been fully elucidated. We confirmed that the administration (intraperitoneal injections for seven days) of vincristine (0.1 mg/kg) and oxaliplatin (3 mg/kg) induced pain by using the von Frey behavioral test. Subsequent applications with vincristine and oxaliplatin led to mechanical allodynia that lasted more than one week from the fifth day. After the induction of mechanical allodynia, the mRNA expression of CXCR2, CXCL1, CXCL3, and CXCL5 was examined in the dorsal root ganglia (DRG) and spinal cord of the CIPN models. As a result, the mRNA expression of CXCR2 robustly increased in the lumbar spinal cord in the oxaliplatin-treated mice. Next, to evaluate the involvement of CXCR2 in CIPN, reparixin, a CXCR1/2 inhibitor, was administered intrathecally or intraperitoneally with vincristine or oxaliplatin and was further verified by treatment with ruxolitinib, which inhibits Janus kinase 2 downstream of the CXCR1/2 pathway. Reparixin and ruxolitinib blocked oxaliplatin-induced allodynia but not vincristine-induced allodynia, which suggests that CXCR2-related pathways are associated with the development of oxaliplatin-induced neuropathy. Together with the above results, this suggests that the prevention of oxaliplatin-induced neuropathy by CXCR2 inhibition can lead to successful chemotherapy, and it is important to provide appropriate countermeasures against CIPN development for each specific chemotherapeutic agent.

Funder

National Research Foundation (NRF) of Korea

Electronics and Telecommunications Research Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3