Biological Activity of Novel Organotin Compounds with a Schiff Base Containing an Antioxidant Fragment

Author:

Antonenko Taisiya A.1,Gracheva Yulia A.1,Shpakovsky Dmitry B.1,Vorobyev Mstislav A.2,Mazur Dmitrii M.1ORCID,Tafeenko Victor A.1,Oprunenko Yury F.1,Shevtsova Elena F.3ORCID,Shevtsov Pavel N.3,Nazarov Alexey A.1ORCID,Milaeva Elena R.1

Affiliation:

1. Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia

2. Institute of Geography of the Russian Academy of Sciences, Department of Glaciology, 117312 Moscow, Russia

3. Institute of Physiologically Active Compounds of Russian Academy of Sciences, 142432 Chernogolovka, Russia

Abstract

A series of novel organotin(IV) complexes on the base of 2-(N-3′,5′-di-tert-butyl-4′-hydroxyphenyl)-iminomethylphenol (L) of formulae Me2SnBr2(L)2 (1), Bu2SnCl2(L)2(2), Ph2SnCl2(L) (3), Ph2SnCl2(L)2 (4) Ph3SnBr(L)2 (5) were synthesized and characterized by 1H, 13C, 119Sn NMR, IR, ESI-MS and elemental analysis. The crystal structures of initial L and complex 2 were determined by XRD method. It was found that L crystallizes in the orthorhombic syngony. The distorted octahedron geometry around Sn center is observed in the structure of complex 2. Intra- and inter-molecular hydrogen bonds were found in both structures. The antioxidant activity of new complexes as reducing agents, radical scavengers and lipoxygenase inhibitors was estimated spectrophotometrically in CUPRAC and DPPH tests (compounds 1 and 5 were found to be the most active in both methods), and in the process of enzymatic oxidation in vitro of linoleic acid under the action of lipoxygenase LOX 1-B (EC50 > 33.3 μM for complex 2). Furthermore, compounds 1–5 have been investigated for their antiproliferative activity in vitro towards HCT-116, MCF-7 and A-549 and non-malignant WI-38 human cell lines. Complexes 2 and 5 demonstrated the highest activity. The plausible mechanisms of the antiproliferative activity of compounds, including the influence on the polymerization of Tb+MAP, are discussed. Some of the synthesized compounds have also actively induced apoptosis and blocked proliferation in the cell cycle G2/M phase.

Funder

scholarship of the President of the Russian Federation for young scientists and graduate students

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3