Contribution of a WRKY Transcription Factor, ShWRKY81, to Powdery Mildew Resistance in Wild Tomato

Author:

Wang Han1,Gong Wenfeng12,Wang Yang1,Ma Qing1ORCID

Affiliation:

1. College of Plant Protection, Northwest A&F University, Yangling 712100, China

2. College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China

Abstract

Tomato powdery mildew, caused by Oidium neolycopersici, is a destructive fungal disease that damages almost all of the aerial parts of tomato, causing devastating losses in tomato production worldwide. WRKY transcription factors are key regulators of plant immunity, but the roles of ShWRKYs in wild tomato Solanum habrochaites LA1777 against O. neolycopersici still remain to be uncovered. Here, we show that ShWRKY81 is an important WRKY transcription factor from wild tomato Solanum habrochaites LA1777, contributing to plant resistance against O. neolycopersici. ShWRKY81 was isolated and identified to positively modulate tomato resistance against On-Lz. The transient overexpression of the ShWRKY81-GFP (green fluorescent protein) fusion protein in Nicotiana benthamiana cells revealed that ShWRKY81 was localized in the nucleus. ShWRKY81 responded differentially to abiotic and biotic stimuli, with ShWRKY81 mRNA accumulation in LA1777 seedlings upon On-Lz infection. The virus-induced gene silencing of ShWRKY81 led to host susceptibility to On-Lz in LA1777, and a loss of H2O2 formation and hypersensitive response (HR) induction. Furthermore, the transcripts of ShWRKY81 were induced by salicylic acid (SA), and ShWRKY81-silenced LA1777 seedlings displayed decreased levels of the defense hormone SA and SA-dependent PRs gene expression upon On-Lz infection. Together, these results demonstrate that ShWRKY81 acts as a positive player in tomato powdery mildew resistance.

Funder

the Key R&D Project of Shaanxi Province

the Key R&D Project of Tibet Autonomous Region

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3