MD Investigation on the Interaction between Carbamazepine and Two CYP Isoforms, CYP3A4 and CYP3A5

Author:

Liu Shuhui12,Xu Yang2

Affiliation:

1. Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China

2. School and Hospital of Stomatology, Jilin University, Changchun 130023, China

Abstract

Carbamazepine (CBZ), a commonly prescribed antiepileptic drug, in human liver, is mainly metabolized by two isoforms of cytochrome P450 (CYP), CYP3A4 and CYP3A5. Therefore, the binding of CBZ with these two enzymes plays crucial role in the biotransformation of the drug into its active metabolite. In the present work, classical molecular dynamics (MD) simulation was used to investigate the detailed interaction mechanism between CBZ and these two CYP isoforms at the atomic level. The results revealed that although CBZ can bind with the two proteins, all kinds of the interactions, including hydrogen bonds, salt bridges, hydrophobic interaction, and π-π interaction, are isoform specific. The specificity directly leads to a binding environment difference at the active sites of the two isoforms, as represented by the electrostatic surface potential maps, which further results in the varied dynamic behavior of CBZ in the two isoforms. Our research will help to deepen the understanding of the physiological functions of CYP isoforms and opens the door for the rational design and development of isoform-specific inhibitors.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference32 articles.

1. Sodium valproate versus phenytoin monotherapy for epilepsy: An individual participant data review;Nevitt;Cochrane Database Syst. Rev.,2018

2. Antidepressant properties of anticonvulsant drugs for bipolar disorder;Ernst;J. Clin. Psychopharm.,2003

3. Carbamazepine and hematological monitoring;Hart;Ann. Neurol.,1982

4. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk;Shear;J. Clin. Investig.,1988

5. Mechanisms of idiosyncratic hypersensitivity reactions to antiepileptic drugs;Leeder;Epilepsia,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3