Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers

Author:

Jung Jae K.1,Lee Ji H.1ORCID,Jeon Sang K.1,Tak Nae H.1,Chung Nak K.1ORCID,Baek Un B.1,Lee Si H.2,Lee Chang H.2,Choi Myung C.3ORCID,Kang Hyun M.3,Bae Jong W.3,Moon Won J.4

Affiliation:

1. Korea Research Institute of Standards and Science, Hydrogen Energy Materials Research Center, Daejeon 34113, Republic of Korea

2. Department of Biochemical and Polymer Engineering, Chosun University, Gwangju 61452, Republic of Korea

3. Rubber Research Division, Korea Institute of Footwear & Leather Technology, Busan 47154, Republic of Korea

4. Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea

Abstract

H2 permeation in peroxide-crosslinked EPDM blended with carbon black (CB) and silica fillers was studied at pressures ranging from 1.2 MPa to 90 MPa via the volumetric analysis technique. H2 uptake in the CB-filled EPDM revealed dual-sorption behaviors via Henry’s law and the Langmuir model, which were attributed to H2 absorption by the polymer chains and H2 adsorption at the filler interfaces, respectively. Additionally, single-sorption mechanisms were observed for neat EPDM and silica-blended EPDM according to Henry’s law, indicating H2 absorption by the polymer chain. The linear decreases in the diffusivity with filler content for the silica-blended EPDMs were attributed to increases in the diffusion paths caused by the filler. Exponential decreases in the diffusivity with increasing filler content and in the permeation with the physical/mechanical properties for CB-filled EPDMs were caused by decreases in the fractional free volume due to increased densities for the EPDM composites. Moreover, good filler-dependent correlations between permeability and density, hardness, and tensile strength were demonstrated for EPDMs used as sealing materials for O-rings. From the resulting equation, we predicted the permeation value without further measurements. Thus, we can select EPDM candidates satisfying the permeation guidelines used in hydrogen infrastructure for the future hydrogen economy.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea Research Institute of Standards and Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3