Application-Aware Resource Allocation Based on Benefit–Cost Ratio in Computing Power Network with Heterogeneous Computing Resources

Author:

Wang Yahui1,Li Yajie1,Guo Jiaxing1,Fan Yingbo1,Chen Ling1,Zhang Boxin1,Wang Wei1,Zhao Yongli1ORCID,Zhang Jie1

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

Abstract

The computing power network (CPN) is expected to realize the efficient provisioning of heterogeneous computing power through the collaboration between cloud computing and edge computing. Heterogeneous computing resources consist of CPU, GPU, and other types of computing power. Different types of applications may have diverse requirements for heterogeneous computing resources, such as general applications, CPU-intensive applications, and GPU-intensive applications. Service providers are concerned about how to dynamically provide heterogeneous computing resources for different applications in a cost-effective manner, and how to deploy more applications as much as possible with limited resources. In this paper, the concept of the benefit–cost ratio (BCR) is proposed to quantify the usage efficiency of CPU and GPU in CPNs. An application-aware resource allocation (AARA) algorithm is designed for processing different types of applications. With massive simulations, we compare the performance of the AARA algorithm with a benchmark. In terms of blocking probability, resource utilization, and BCR, AARA achieves better performance than the benchmark. The simulation results indicate that more computing tasks can be accommodated by reducing 3.7% blocking probability through BCR-based resource allocation.

Funder

Beijing Natural Science Foundation

the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network, Soochow University

the Fundamental Research Funds for the Central Universities and NSFC

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3