Correction of Distorted Wavefront Using Dual Liquid Crystal Spatial Light Modulators

Author:

Wu Jiali,Ke Xizheng,Yang Yaqi,Liang Jingyuan,Liu Mingyu

Abstract

In space optical communication, owing to the influence of atmospheric turbulence, optical beams lose focus and become phase-distorted, which reduces the communication quality. Considering the polarization dependence of liquid crystal spatial light modulators and the dispersion effect of liquid crystal materials, the energy utilization rate of liquid crystal adaptive optics systems is low. In this study, a dual liquid crystal spatial light modulator adaptive optics system based on the GS algorithm is used to correct the wavefront distortion of a signal beam under different atmospheric turbulence intensities, and the Strehl ratio (SR) is used as the evaluation index. The simulation results show that the SR of the corrected system can be increased from 0.23, 0.41, and 0.72 to 0.77, 0.89, and 0.95, respectively. The corrected beam spot was more concentrated and the light intensity at the center of the beam spot was stronger. The experimental results show that, after the distortion wavefront is corrected by the dual liquid crystal spatial light modulator, the average gray value of the 10 × 10 pixels in the center of the spot increases from 159.3, 113.1, and 58.4 to 253.4, 247.7, and 198.3, respectively.

Funder

The Key Industrial Innovation Chain Project of Shaanxi Province

Scientific Research Plan Projects of Shaanxi Education Department

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3