Author:
Jiang Cheng,Lu Hongxia,Zhai Zhangyin,Chen Guibin
Abstract
We present a scheme for realizing phase-controlled entanglement in a microwave optomechanical system comprising two microwave cavities and two mechanical oscillators. Under specific driving conditions, we show that this optomechanical interface can be exploited to generate simultaneously the stationary cavity–cavity entanglement, mechanical–mechanical entanglement, and cavity–mechanical entanglement. Due to the closed loop interaction, we find that the entanglement can be controlled flexibly by tuning the phase difference between the optomechanical coupling strengths. The dependence of the entanglement on the amplitudes of the optomechanical coupling strengths is also explored in detail. Moreover, the bipartite entanglements are robust against temperature, and it is shown that the mechanical oscillators are cooled to the ground state in the parameter regimes for observing entanglement.
Funder
National Natural Science Foundation of China
Natural Science Research of Jiangsu Higher Education Institutions of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献