Genetic Optimization of the Y-Shaped Photonic Crystal NOT Logic Gate

Author:

Pavelyev Vladimir12,Krivosheeva Yuliana1,Golovashkin Dimitriy12

Affiliation:

1. Samara National Research University, 443086 Samara, Russia

2. IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia

Abstract

The present paper is devoted to the actual problem of photonic crystal (PhC) logic gate design. The development of components for photonic digital computing systems will provide opportunities for high-efficient information processing. The use of 2D photonic crystals is one of the most promising approaches to designing interference logic gates. Photonic crystal band gap and use of lattice defects are giving opportunities for flexible control of waveguiding light. Interference logic gates of NOT, OR, AND, and XOR types based on the Y-shaped structure are well known. However, known realizations have limited energy efficiency. Earlier, a method for minimizing energy losses at the PhC waveguide bending based on genetic optimization of the PhC waveguide topology was proposed and investigated. In this paper, the genetic algorithm for optimization of the PhC interference logic gate of the NOT type was used. Optimization of the Y-shaped topology allowed for an increase in the energy efficiency of the logic gate to 95%. A description of the developed numerical procedure as well as computer simulation results are presented. The developed procedure includes the possibility of taking into account the limitations of the technology to be used for the realization of a designed 2D PhC structure.

Funder

Federal project “Advanced Engineering Schools” of the Ministry of Science and Higher Education of the Russian Federation

State assignment of Federal Scientific Research Center “Crystallography and Photonics” of Russian Academy of Sciences

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3