Interaction between Graphene Nanoribbon and an Array of QDs: Introducing Nano Grating

Author:

Armaghani Sahar,Rostami AliORCID,Mirtaheri Peyman

Abstract

In this work, the interaction between an array of QDs and Graphene nanoribbon is modeled using dipole–dipole interaction. Then, based on the presented model, we study the linear optical properties of the considered system and find that by changing the size, number, and type of quantum dots as well as how they are arranged, the optical properties can be controlled and the controllable grating plasmonic waveguides can be implemented. Therefore, we introduce different structures, compare them together and find that each of them can be useful based on their application in optical integrated circuits. The quantum dot arrays are located on a graphene nanoribbon with dimensions of 775 × 40 nm2. Applying electromagnetic waves with a wavelength of 1.55 µm causes polarization in the quantum dots and induces surface polarization on graphene. It is shown that, considering the large radius of the quantum dot, the induced polarization is increased, and ultimately the interaction with other quantum dots and graphene nanoribbon is stronger. Similarly, the distance between quantum dots and the number of QDs on Graphene nanoribbon are basic factors that affect the interaction between QDs and nanoribbon. Due to the polarization effect of these elements between each other, we see the creation of the effective grating refractive index in the plasmonic waveguide. This has many applications in quantum optical integrated circuits, nano-scale atomic lithography for nano-scale production, the adjustment coupling coefficient between waveguides, and the implementation of optical gates, reflectors, detectors, modulators, and others.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3