Study on the Physical Characteristics of Plasma and Its Relationship with Pore Formation during Laser-Metal Active Gas Arc Hybrid Welding of 42CrMo Steel

Author:

Zhang Yan1,Li Hao1,Mi Xin1,Zhou Hongzhi1,Zhang Mingjun2,Wan Zhongmin1,Tang Liyuan1

Affiliation:

1. College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China

2. Key Laboratory of High Performance Intelligent Manufacturing of Mechanical Equipment of Hunan Province, Changsha University of Science & Technology, Changsha 410114, China

Abstract

The automobile industry puts forward higher requirements for the design and manufacture of steel pistons. However, the welding of 42CrMo steel pistons still has unsolved technical problems, especially welding defects that cannot be directly detected, such as pores, which are easily generated inside the weld. A plasma experiment of laser-metal active gas arc (MAG) hybrid welding 42CrMo steel was conducted in this paper, and plasma signals inside and outside the keyhole were detected during the laser welding, leading laser laser-MAG hybrid welding, and leading arc laser-MAG hybrid welding of 42CrMo steel. The characteristic parameters such as electron temperature and electron density were calculated and analyzed to investigate the relationship between plasma behavior and the formation of weld porosity in the welding process of 42CrMo steel. Based on the fluctuations in plasma electron temperature and electron density, the prediction of pore formation in the weld of 42CrMo steel was made, aiming to provide guidance for achieving a stable and reliable laser-MAG hybrid welding process for 42CrMo steel.

Funder

Science and Technology Innovation Program of Hunan Province

Natural Science Foundation of Hunan Province

Key scientific research project of Hunan Education Department

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3