Vector Light Field Immediately behind an Ideal Spherical Lens: Spin–Orbital Conversion, Additional Optical Vortices, Spin Hall Effect, Magnetization

Author:

Kotlyar Victor V.12ORCID,Kovalev Alexey A.12ORCID,Stafeev Sergey S.12ORCID,Kozlova Elena S.12,Telegin Alexey M.12ORCID

Affiliation:

1. IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001 Samara, Russia

2. Technical Cybernetics Department, Samara National Research University, Moskovskoye Shosse 34, 443086 Samara, Russia

Abstract

The Richards–Wolf formulas not only adequately describe a light field at a tight focus, but also make it possible to describe a light field immediately behind an ideal spherical lens, that is, on a converging spherical wave front. Knowing all projections of light field strength vectors behind the lens, the longitudinal components of spin and orbital angular momenta (SAM and OAM) can be found. In this case, the longitudinal projection of the SAM immediately behind the lens either remains zero or decreases. This means that the Spin–Orbital Conversion (SOC) effect where part of the “spin goes into orbit” takes place immediately behind the lens. And the sum of longitudinal projections of SAM and OAM is preserved. As for the spin Hall effect, it does not form right behind the lens, but appears as focusing occurs. That is, there is no Hall effect immediately behind the lens, but it is maximum at the focus. This happens because two optical vortices with topological charges (TCs) 2 and −2 and with spins of different signs (with left and right circular polarization) are formed right behind the lens. However, the total spin is zero since amplitudes of these vortices are the same. The amplitude of optical vortices becomes different while focusing and at the focus itself, and therefore regions with spins of different signs (Hall effect) appear. A general form of initial light fields which longitudinal field component is zero at the focus was found. In this case, the SAM vector can only have a longitudinal component that is nonzero. The SAM vector elongated only along the optical axis at the focus is used in magnetization task.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3