Onset of Quantum-Confined Stark Effects in Multijunction Photovoltaic Laser Power Converters Designed with Thin Subcells

Author:

Fafard Simon1,Masson Denis1

Affiliation:

1. Broadcom (Canada), IFPD, Ottawa, ON K1A 0R6, Canada

Abstract

Photovoltaic multijunction power-converting III–V semiconductor devices generate electrical power from the optical energy of laser beams. They exhibit conversion efficiencies reaching values greater than 60% and 50% for the GaAs and the InP material systems, respectively. The applications of optical wireless power transmission and power-over-fiber greatly benefit from employing such laser power converters constructed with multiple subcells; each is designed with either thin GaAs or InGaAs absorber regions. This study elucidates how the application of electric fields on thin heterostructures can create specific current–voltage characteristics due to modifications of the absorption characteristics from Franz–Keldysh perturbations and the onset of quantum-confined Stark effects. Negative differential photocurrent behavior can be observed as the reverse bias voltage is increased, until the corresponding current-clamping subcell reaches its reverse breakdown condition. The reverse voltage breakdown characteristics of the subcells were also measured to depend on the thickness of the subcell and on the optical intensity. The onset of the reverse breakdown was found to be at ~2.0–2.5 V under illumination and the thinner subcells exhibited higher levels of reverse bias currents. These effects can produce distinctive current–voltage behavior under spectrally detuned operations affecting the thinner subcells’ biases, but have no significant impact on the performance and maximum power point of multijunction power converters.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3