Polarized-Speckle Deviation Imaging through Scattering Media under Strong Background Light Interference

Author:

He Si1ORCID,Wang Xia1ORCID,Li Linhao1

Affiliation:

1. Key Laboratory of Optoelectronic Imaging Technology and Systems, Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

Abstract

A crucial challenge faced by noninvasive imaging through strongly scattering media is overcoming background light interference. Polarization-based anti-scattering methods can eliminate background light interference, but fail to utilize speckle images that do not contain unscattered object light for object reconstruction. Although speckle correlation imaging (SCI) methods can utilize speckle images for object reconstruction, it is difficult to achieve stable high-quality reconstruction and overcome background light interference using these methods. In this study, we propose a polarized-speckle deviation imaging (PSDI) method to overcome background light interference and achieve high-quality imaging through strongly scattering media. PSDI utilizes the bispectrum and autocorrelation of polarized speckle image deviations to reconstruct the Fourier phase and amplitude spectra of the object image, respectively. Experimental results show that when the background light is polarized and unpolarized, PSDI can achieve stable high-fidelity reconstruction of a polarized object when the signal-to-background ratio (SBR) is lower than −7 dB and −9 dB, respectively. PSDI bridges the gap between imaging with strongly scattered light and overcoming strong background light interference, and is expected to find widespread applications in fields such as biomedical imaging, astronomical observation, underwater imaging, and remote sensing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3