Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy

Author:

Voevodin Vladimir I.12ORCID,Brudnyi Valentin N.3ORCID,Sarkisov Yury S.4,Su Xinyang5ORCID,Sarkisov Sergey Yu.16ORCID

Affiliation:

1. Synchrotron Radiation Detector Laboratory, R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk 634050, Russia

2. LLC Laboratory of Optical Crystals, Tomsk 634040, Russia

3. Department of Semiconductor Physics, Tomsk State University, Tomsk 634050, Russia

4. Department of Physics, Chemistry and Theoretical Mechanics, Tomsk State University of Architecture and Building, Tomsk 634003, Russia

5. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

6. Laboratory for Terahertz Research, Tomsk State University, Tomsk 634050, Russia

Abstract

Terahertz photoconductivity and charge carrier recombination dynamics at two-photon (ZnGeP2) and three-photon (4H-SiC) excitation were studied. Thermally annealed, high-energy electron-irradiated and Sc-doped ZnGeP2 crystals were tested. The terahertz charge carrier mobilities were extracted from both the differential terahertz transmission at a specified photoexcitation condition and the Drude–Smith fitting of the photoconductivity spectra. The determined terahertz charge carrier mobility values are ~453 cm2/V·s for 4H-SiC and ~37 cm2/V·s for ZnGeP2 crystals. The charge carrier lifetimes and the contributions from various recombination mechanisms were determined at different injection levels using the model, which takes into account the influence of bulk and surface Shockley–Read–Hall (SRH) recombination, interband radiative transitions and interband and trap-assisted Auger recombination. It was found that ZnGeP2 possesses short charge carrier lifetimes (a~0.01 ps−1, b~6 × 10−19 cm3·ps−1 and c~7 × 10−40 cm6·ps−1) compared with 4H-SiC (a~0.001 ps−1, b~3 × 10−18 cm3·ps−1 and c~2 × 10−36 cm6·ps−1), i.e., τ~100 ps and τ~1 ns at the limit of relatively low injection, when the contribution from Auger and interband radiative recombination is small. The thermal annealing of as-grown ZnGeP2 crystals and the electron irradiation reduced the charge carrier lifetime, while their doping with 0.01 mass % of Sc increased the charger carrier lifetime and reduced mobility. It was found that the dark terahertz complex conductivity of the measured crystals is not fitted by the Drude–Smith model with reasonable parameters, while their terahertz photoconductivity can be fitted with acceptable accuracy.

Funder

Ministry of Science and Higher Education of the Russian Federation

Government of the Russian Federation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3