Energy Backflow in Tightly Focused Fractional Order Vector Vortex Beams with Binary Topological Charges

Author:

Wu Yan1,Hu Xiaobo1ORCID,Li Yuhua1,Chen Ruipin1ORCID

Affiliation:

1. Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Using the Richards–Wolf diffraction integral, the longitudinal energy evolution on the focal plane of the fractional order vector vortex (FOVV) beams was studied. These beams possessed a vortex topological charge n and a polarization topological charge m, and were subjected to tight focusing through a larger numerical aperture. Our investigation revealed the existence of backflow energy when the binary topological charges n and m satisfied the conditions of n + m = 2 or n − m = −2. The component circularly polarized vortex beams of e−i2ϕe^+ (i.e., the minus second-order vortex right circularly polarized beam) and ei2ϕe^− (i.e., the second-order vortex left circularly polarized beam) played significant roles in the generation of reverse energy flux at the focal region. For FOVV beams with binary topological charges n and m, whose sum and difference were integers, the longitudinal energy on the focal plane exhibited axial symmetry. If the sum or the difference of the topological charges n and m was not an integer, the axisymmetric longitudinal energy on the focal plane was disrupted.

Funder

Zhejiang province basic public welfare research program project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3