Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection

Author:

Li Xiuzhu12,Zhang Min12,Guo Haoran12,Shi Zixiong12,Guo Yuanyuan12,Zhao Tong12ORCID,Wang Anbang34

Affiliation:

1. Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Ministry of Education and Shanxi Province, Taiyuan 030024, China

2. College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China

4. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Fiber fault detection is crucial for maintaining the quality of optical communication, especially in well-established optical access networks with extended distances and a growing number of subscribers. However, the increasing insertion loss in fiber links presents challenges for traditional fault-detection methods in capturing fault echoes. To overcome these limitations, we propose a modulation-enhanced external-cavity-resonant-frequency method that utilizes a laser for fault echo reception, providing improved sensitivity compared to traditional photodetector-based methods. Our previous work focused on analyzing key parameters, such as sensitivity and spatial resolution, but did not consider practical aspects of selecting optimal modulation parameters. In this study, we develop a model based on Lang–Kobayashi rate equations for current-modulated optical feedback lasers and validate it through experimental investigations. Our findings reveal that optimal detection performance is achieved with a modulation depth of 0.048, a frequency sweeping range of 0.6 times the laser relaxation oscillation frequency, and a frequency sweeping step of 0.1 times the external cavity resonant frequency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

National Defense Basic Scientific Research Project

development fund in science and technology of Shanxi Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3