Detection of Small Moving Objects in Long Range Infrared Videos from a Change Detection Perspective

Author:

Kwan ChimanORCID,Larkin JudeORCID

Abstract

Detection of small moving objects in long range infrared (IR) videos is challenging due to background clutter, air turbulence, and small target size. In this paper, we present two unsupervised, modular, and flexible frameworks to detect small moving targets. The key idea was inspired by change detection (CD) algorithms where frame differences can help detect motions. Our frameworks consist of change detection, small target detection, and some post-processing algorithms such as image denoising and dilation. Extensive experiments using actual long range mid-wave infrared (MWIR) videos with target distances beyond 3500 m from the camera demonstrated that one approach, using Local Intensity Gradient (LIG) only once in the workflow, performed better than the other, which used LIG in two places, in a 3500 m video, but slightly worse in 4000 m and 5000 m videos. Moreover, we also investigated the use of synthetic bands for target detection and observed promising results for 4000 m and 5000 m videos. Finally, a comparative study with two conventional methods demonstrated that our proposed scheme has comparable performance.

Funder

US government PPP

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Autonomous Vehicle Technology with YOLOv8;International Journal of Advanced Research in Science, Communication and Technology;2024-07-06

2. Polarization-Based Reflection Suppression Method and Its Application to Target Detection;Photonics;2024-05-10

3. Heterostructure-Based Optoelectronic Neuromorphic Devices;Electronics;2024-03-14

4. 4DST-BTMD: An Infrared Small Target Detection Method Based on 4-D Data-Sphered Space;IEEE Transactions on Geoscience and Remote Sensing;2024

5. Feature-Based Knowledge Distillation for Infrared Small Target Detection;IEEE Geoscience and Remote Sensing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3