Photoionization of Electrons in Degenerate Energy Level of Hydrogen Atom Induced by Strong Laser Pulses

Author:

Xin PeipeiORCID,Qiu Tianhui,Ma HongyangORCID,Yuan Hua,Liu Hongping

Abstract

Photoionization dynamics of bounded electrons in the ground state, the first and second excited states of a hydrogen atom, triggered by ultrashort near-infrared laser pulses, have been investigated in a transition regime (γ∼1) that offers both multiphoton and tunneling features. Significant differences in spectral characteristics are found between the three low-energy states. The H(2s) ionization probability is larger than the H(2p) value with a special oscillating structure, but both are much greater than the ground state H(1s) in a wide range of laser intensities. By comparing the momentum spectrum and angular distributions of low-energy photoelectrons released from these degenerate states, we find the H(2p) state shows a stronger long-range Coulomb attraction force than the H(2s) state on account of the difference in the initial electron wave packet. Furthermore, analysis of the photoelectron momentum distributions sheds light on both the first and second excited states with a symmetrical intercycle interference structure in a multicycle field but an intracycle interference of an asymmetric left-handed or right-handed rotating spectrum in a few-cycle field. By analyzing photoelectron spectroscopy, we identify the parity characteristics of photoelectrons in different energy intervals and their corresponding above-threshold single-photon ionization (ATSI) or above-threshold double-photon ionization (ATDI) processes. We finally present the momentum distributions of the electrons ionized by laser pulses with different profiles and find the carrier-envelope phase (CEP) is a strong factor in deciding the rotating structure of the emission spectrum, which provides a new method to distinguish the CEP of few-cycle pulses.

Funder

Natural Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3