Mid-Infrared Hollow-Core Fiber Based Flexible Longitudinal Photoacoustic Resonator for Photoacoustic Spectroscopy Gas Sensing

Author:

Xu Zuying,Li Tailin,Sima ChaotanORCID,Long Yanhong,Zhang Xiaohang,Ai Yan,Hong Minzhi,Chen Muqi,Deng Botao,Lv Dajuan,Lu Ping

Abstract

Photoacoustic spectroscopy (PAS) has received extensive attention in optical gas sensing due to the advantages of high sensitivity, gas selectivity, and online detection. Here, a mid-infrared hollow-core fiber (HCF) based flexible longitudinal photoacoustic resonator for PAS-based gas sensing is proposed and theoretically demonstrated. A mid-infrared anti-resonant HCF is designed to innovatively replace the traditional metallic acoustic resonator and obtain a flexible photoacoustic cell in PAS. Optical transmission characteristics of the HCF are analyzed and discussed, achieving single mode operation with below 1 dB/m confinement loss between 3 and 8 μm and covering strong absorptions of some hydrocarbons and carbon oxides. With varied bending radii from 10 mm to 200 mm, the optical mode could be maintained in the hollow core. Based on the photoacoustic effect, generated acoustic mode distributions in the HCF-based flexible photoacoustic resonator are analyzed and compared. Results show that the PAS-based sensor has a stable and converged acoustic profile at the resonant frequency of around 16,787 Hz and a favorable linear response to light source power and gas concentration. The proposed novel photoacoustic resonator using HCF presents bring potential for advanced flexible PAS-based gas detection.

Funder

NSFC

NSFC-RS Exchange Program

Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei

Open Projects Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3