Optical Manipulation of Fibroblasts with Femtosecond Pulse and CW Laser

Author:

Zhang Xia1,Wu Yi1,Cai Siao2,Feng Guoying1

Affiliation:

1. Institute of Laser & Micro/Nano Engineering, Sichuan University, Chengdu 610065, China

2. College of Computer Science, Sichuan University, Chengdu 610065, China

Abstract

Using tight focusing light, optical tweezers (OT) are tools that can manipulate and capture microscopic particles and biological cells as well as characterize a wide range of micro and nanomaterials. In this paper, we focused on fibroblasts, which are widely used in the biomedical area for a variety of purposes, including promoting human wound healing and preventing the early proliferation of tumor cells. We first built an optical tweezer experimental platform, using an 808 nm continuous-wave laser as the capture light source, to confirm that the device can precisely control the movement of single or multiple particles as well as fibroblasts. Then, a 1030 nm femtosecond laser was employed as the capture light source to study the manipulation of microparticles and fibroblasts at different powers. Lastly, a protracted manipulation protocol was used to prevent the fibroblasts from adhering to the wall. This method can be used to isolate and precisely block adherent growth of fibroblasts in cell populations. This experimental result can be further extended to other biological cells.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China under Grant

International Science and Technology Cooperation Projects funded by the Chengdu Municipal Government

International Cooperation Projects of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3