Adaptive Fiber Ring Laser Based on Tapered Polarization Maintaining Fiber in Sagnac Loop for Temperature and Salinity Sensing

Author:

Liu Yuhui12ORCID,Lin Weihao1ORCID,Zhao Fang1ORCID,Hu Jie1ORCID,Chen Jinna1,Liu Huanhuan1,Shum Perry Ping13ORCID,Zhang Xuming2ORCID,Shao Li-Yang13ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

2. Department of Applied Physics, Hong Kong Polytechnic University, Hongkong 999077, China

3. Peng Cheng Laboratory, Shenzhen 518005, China

Abstract

An optical fiber ring laser (FRL) cavity-based sensitive temperature and salinity sensor is proposed and experimentally demonstrated. The sensor consists of a Sagnac loop with a waist of 15 µm and a total length of 30 cm made of tapered polarization-maintaining fiber (PMF). Sagnac loop dual parameter sensing was theoretically modeled and presented. The salinity sensitivity of 0.173 nm/‰ was made possible by the efficient interaction between the tapered PMF cladding mode and the external refractive index. In addition, temperature sensitivity of 0.306 nm/°C was achieved through ultrahigh birefringence of PMF. Apart from that, the previous sensing system used a broadband light source (BBS) as the input light, resulting in a wide bandwidth and a poor signal-to-noise ratio (SNR). The Sagnac loop integrated into the FRL system can achieve a high SNR of approximately 50 dB and a narrow bandwidth of 0.15 nm while serving as the filter and sensor head. Additionally, the developed sensor has the advantages of simple design, low cost, and easy fabrication. It can also extend sensing distance indefinitely within a given range, which is anticipated to have positive effects on the testing of marine environments in laboratories.

Funder

Department of Natural Resources of Guangdong Province

Science, Technology, and Innovation Commission of Shenzhen Municipality

Intelligent Laser Basic Research Laboratory

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3