Crystalline Flat Surface Recovered by High-Temperature Annealing after Laser Ablation

Author:

Smith Daniel1ORCID,Ng Soon Hock1ORCID,Tang Amanda1,Katkus Tomas1,Moraru Daniel2ORCID,Juodkazis Saulius13ORCID

Affiliation:

1. Optical Sciences Centre (OSC) and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2. Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Hamamatsu 432-8011, Japan

3. World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

Ultra-short laser pulses (1030 nm/230 fs) were used to laser ablate the surface of crystalline sapphire (Al2O3) at high intensity per pulse 20–200 TW/cm2/pulse. Laser-ablated patterns were annealed at a high temperature of 1500 °C. Surface reconstruction took place, removing the ablation debris field at the edges of ablated pits in oxygen flow (O2 flow). Partial reconstruction of ripples was also observed when multi-pulse ablated surfaces were annealed at high temperature in O2 flow. Back-side ablation of a 0.5-mm-thick Al2O3 produced high surface roughness ∼1μm which was reduced to ∼0.2μm by high-temperature annealing at 1500 °C for 2 h in O2. Improvement of surface quality was due to restructuring of the crystalline surface and sublimation, while the defined 3D shape of a micro-lens was not altered after HTA (no thermal morphing).

Funder

Australian Research Council

Nanotechnology Facility at Swinburne

Workshop-on-Photonics for the technology transfer project, which installed the first industrial-grade microfabrication setup in Australia

Laser Systems Ltd., Sapporo, Japan

Tecdia Ltd., Tokyo, Japan

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3