Prediction of the Quality of Thermally Sprayed Copper Coatings on Laser-Structured CFRP Surfaces Using Hyperspectral Imaging

Author:

Gebauer JanaORCID,Gruber FlorianORCID,Holfeld Wilhelm,Grählert Wulf,Lasagni Andrés Fabián

Abstract

With the progressive replacement of metallic parts by high-performance fiber-reinforced plastic (FRP) components, typical properties of metals are required to be placed on the material’s surface. A metallic coating applied to the FRP surface by thermal spraying, for instance, can fulfill these requirements, including electrical conductivity. In this work, laser pre-treatments are utilized for increasing the bond strength of metallic coatings. However, due to the high-precision material removal using pulsed laser radiation, the production-related heterogeneous fiber distribution in FRP leads to variations in the structuring result and consequently to different qualities of the subsequent coating. In this study, hyperspectral imaging (HSI) technologies in conjunction with deep learning were applied to carbon fiber-reinforced plastics (CFRP) structured by nanosecond pulsed laser. HSI-based prediction models could be developed, which allow for reliable prediction, with an accuracy of around 80%, of which laser-treated areas will successfully be coated and which will not. By using this objective and automatic evaluation, it is possible to avoid large amounts of rejects before further processing the parts and also to optimize the adhesion of coatings. Spatially resolved data enables local reworking during the laser process, making it feasible for the manufacturing process to achieve zero waste.

Funder

European Structural Fonds EFRE

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3