Group Control of Photo-Responsive Colloidal Motors with a Structured Light Field

Author:

Li Dianyang1,Wei Huan1,Fang Hui1ORCID,Gao Yongxiang2

Affiliation:

1. Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

2. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

Abstract

Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device design. Here, we focus on studying the group control of colloidal motors made from a photo-responsive organic polymer molecule NO-COP (N,O-Covalent organic polymer). These colloidal motors mainly respond to light intensity patterns. Considering its merits of fast refreshing speed, good programmability, and high-power threshold, we chose a digital micromirror device (DMD) to modulate the structured light field shining on the sample. It was found that under ultraviolet or green light modulation, such colloidal motors exhibit various group behaviors including group spreading, group patterning, and group migration. A qualitative interpretation is also provided for these observations.

Funder

National Natural Science Foundation of China

the Key Project of Guangdong Provincial Department of Education

the Scientific Instrument Developing Project of ShenZhen University

Publisher

MDPI AG

Reference34 articles.

1. Active Particles in Complex and Crowded Environments;Bechinger;Rev. Mod. Phys.,2016

2. Hydrodynamics of Soft Active Matter;Marchetti;Rev. Mod. Phys.,2013

3. Topological Active Matter;Shankar;Nat. Rev. Phys.,2022

4. Soft Matter;Science,1992

5. Collective Motion;Vicsek;Phys. Rep.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3