Time- and Phase-Domain Thermal Tomography of Composites

Author:

Vavilov Vladimir,Shiryaev Vladimir,Kuimova Marina

Abstract

Active infrared (IR) thermographic nondestructive testing (NDT) has become a valuable inspection method for composite materials due to its high sensitivity to particular types of defect and high inspection rate. The computer-implemented thermal tomography, based on the analysis of heat diffusion in solids, involves a specialized treatment of the data obtained by means of active IR thermographic NDT, thus allowing for the “slicing” of materials under testing for a few layers where discontinuity-like defects can be underlined on the noise-free background (binary thermal tomograms). The time-domain thermal tomography is based on the fact that, in a one-sided test, temperature “footprints” of deeper defects appear later in regard to shallower defects. The phase-domain tomography can be applied to collected IR data in a direct way, for instance, by using the Fourier transform, but quantification of results is more difficult because the relationships between phase and defect depth depend on experimental parameters, and the corresponding “phase vs. defect depth” calibration functions are ambiguous. In this study, the time- and phase-domain thermal tomography techniques have been compared on simulated IR thermograms and experimentally applied to the evaluation of carbon fiber reinforced plastic composite containing impact damage defects characterized by impact energy 10, 18, and 63 J. Both tomographic techniques have demonstrated similar results in the reconstruction of thermal tomograms and, in some cases, supplied complementary information about the distribution of single defect zones within impacted areas.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference21 articles.

1. A new approach to thermal tomography;Kline;AIP Conf. Proc.,2003

2. Defect depth retrieval from pulsed phase thermographic data on Plexiglas and aluminum samples;Ibarra-Castanedo;Proc. SPIE,2004

3. Thermal-Wave Imaging

4. Photothermal Science and Techniques;Almond,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3