Rate-Splitting-Based Generalized Multiple Access for Band-Limited Multi-User VLC

Author:

Tang Yuru1,Chen Chen1ORCID,Liu Min1,Du Pengfei2,Fu H. Y.3ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. A*STAR’s Singapore Institute of Manufacturing Technology, Singapore 138634, Singapore

3. Tsinghua Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China

Abstract

In this paper, we propose a rate-splitting-based generalized multiple access (GMA) scheme for band-limited multi-user visible light communication (VLC) systems. By splitting and transmitting the input data of each user in a joint orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) manner, the proposed rate-splitting-based GMA scheme can obtain better bandwidth utilization than OMA and suffer less severe interference than NOMA. In order to achieve the maximum sum rate over typical low-pass VLC channels, the optimal rate-splitting-based GMA scheme was first obtained through theoretical analysis and computer simulations. Subsequently, the superiority of the optimal rate-splitting-based GMA scheme over both OMA and NOMA under various channel conditions, user separations, and error propagation levels was further verified by the theoretical, simulation, and experimental results. In particular, the experimental results showed that, when the error propagation ratio was increased from 0 to 0.2, the sum rate reduction ratio was significantly reduced from 31.4% to 7.5% by replacing NOMA with the obtained optimal rate-splitting-based GMA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Sichuan Provincial S&T Projects

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3