Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System

Author:

Luna-Rivera Jose Martin1ORCID,Rabadan Jose2ORCID,Rufo Julio3ORCID,Gutierrez Carlos A.1ORCID,Guerra Victor4ORCID,Perez-Jimenez Rafael2ORCID

Affiliation:

1. Faculty of Sciences, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78295, Mexico

2. Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC), Universidad de Las Palmas de Gran Canaria, PCT Tafira, 35017 Las Palmas, Spain

3. Departamento en Ingeniería Industrial, Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain

4. Pi Lighting, 1950 Sion, Switzerland

Abstract

Visible Light Communication (VLC) is emerging as a promising technology to meet the demands of fifth-generation (5G) networks and the Internet of Things (IoT). This study introduces a novel RGB-LED-based VLC system design that leverages autoencoders, addressing the often overlooked impact of optical-to-electrical (O/E) conversion efficiency. Unlike traditional methods, our autoencoder-based system not only improves communication performance but also mitigates the negative effects of O/E conversion. Through comprehensive simulations, we show that the proposed autoencoder structure enhances system robustness, achieving superior performance compared to traditional VLC systems. By quantitatively assessing the impact of O/E conversion—a critical aspect previously overlooked in the literature—our work bridges a crucial gap in VLC research. This contribution not only advances the understanding of VLC systems but also provides a strong foundation for future enhancements in 5G and IoT connectivity.

Funder

Spanish State Research Agency

MCIN / AEI /

Publisher

MDPI AG

Reference34 articles.

1. Survey on Free Space Optical Communication: A Communication Theory Perspective;Khalighi;IEEE Commun. Surv. Tutor.,2014

2. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges;Pathak;IEEE Commun. Surv. Tutor.,2015

3. Deep Learning in Physical Layer Communications;Qin;IEEE Wirel. Commun.,2019

4. A Learning-Based End-to-End Wireless Communication System Utilizing a Deep Neural Network Channel Module;An;IEEE Access,2023

5. (2019). IEEE Standard for Local and Metropolitan Area Networks—-Part 15.7: Short-Range Optical Wireless Communications (Standard No. IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011)).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3